Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black
نویسندگان
چکیده
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes.
منابع مشابه
Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملDeep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus
Microelectrode arrays (wire diameter <50 μm) were compared to traditional macroelectrodes for deep brain stimulation (DBS). Understanding the neuronal activation volume may help solve some of the mysteries associated with DBS, e.g., its mechanisms of action. We used c-fos immunohistochemistry to investigate neuronal activation in the rat hippocampus caused by multi-micro- and macroelectrode sti...
متن کاملFlexible Electrode Array for Retinal Stimulation
In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...
متن کاملMultielectrode Microprobes for Deep-brain Stimulation Fabricated Using a Novel 3-d Shaping Electroplating Process
This paper describes a novel 22-mm-long multi-channel microelectrode suitable for deep-brain stimulation in rodents. The platinum electrodes and conducting interconnects are insulated by silicon nitride and the mechanical support is provided by a 3-D electroplated biocompatible metallic structure. The shape of the probe has been designed to provide sufficient mechanical stiffness for accurate t...
متن کاملCharacterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
Revealing the complex signal-processing mechanisms and interconnection patterns of the nervous system has long been an intriguing puzzle. As a contribution to its understanding the optimization of the impedance behavior of implantable electrode arrays with via holes is discussed here. Peripheral axons will regenerate through these holes allowing for simultaneous nerve stimulation and signal rec...
متن کامل